37 research outputs found

    Convex hulls of spheres and convex hulls of convex polytopes lying on parallel hyperplanes

    Full text link
    Given a set Σ\Sigma of spheres in Ed\mathbb{E}^d, with d3d\ge{}3 and dd odd, having a fixed number of mm distinct radii ρ1,ρ2,...,ρm\rho_1,\rho_2,...,\rho_m, we show that the worst-case combinatorial complexity of the convex hull CHd(Σ)CH_d(\Sigma) of Σ\Sigma is Θ(1ijmninjd2)\Theta(\sum_{1\le{}i\ne{}j\le{}m}n_in_j^{\lfloor\frac{d}{2}\rfloor}), where nin_i is the number of spheres in Σ\Sigma with radius ρi\rho_i. To prove the lower bound, we construct a set of Θ(n1+n2)\Theta(n_1+n_2) spheres in Ed\mathbb{E}^d, with d3d\ge{}3 odd, where nin_i spheres have radius ρi\rho_i, i=1,2i=1,2, and ρ2ρ1\rho_2\ne\rho_1, such that their convex hull has combinatorial complexity Ω(n1n2d2+n2n1d2)\Omega(n_1n_2^{\lfloor\frac{d}{2}\rfloor}+n_2n_1^{\lfloor\frac{d}{2}\rfloor}). Our construction is then generalized to the case where the spheres have m3m\ge{}3 distinct radii. For the upper bound, we reduce the sphere convex hull problem to the problem of computing the worst-case combinatorial complexity of the convex hull of a set of mm dd-dimensional convex polytopes lying on mm parallel hyperplanes in Ed+1\mathbb{E}^{d+1}, where d3d\ge{}3 odd, a problem which is of independent interest. More precisely, we show that the worst-case combinatorial complexity of the convex hull of a set {P1,P2,...,Pm}\{\mathcal{P}_1,\mathcal{P}_2,...,\mathcal{P}_m\} of mm dd-dimensional convex polytopes lying on mm parallel hyperplanes of Ed+1\mathbb{E}^{d+1} is O(1ijmninjd2)O(\sum_{1\le{}i\ne{}j\le{}m}n_in_j^{\lfloor\frac{d}{2}\rfloor}), where nin_i is the number of vertices of Pi\mathcal{P}_i. We end with algorithmic considerations, and we show how our tight bounds for the parallel polytope convex hull problem, yield tight bounds on the combinatorial complexity of the Minkowski sum of two convex polytopes in Ed\mathbb{E}^d.Comment: 22 pages, 5 figures, new proof of upper bound for the complexity of the convex hull of parallel polytopes (the new proof gives upper bounds for all face numbers of the convex hull of the parallel polytopes

    The maximum number of faces of the Minkowski sum of two convex polytopes

    Get PDF
    We derive tight expressions for the maximum number of kk-faces, 0kd10\le{}k\le{}d-1, of the Minkowski sum, P1P2P_1\oplus{}P_2, of two dd-dimensional convex polytopes P1P_1 and P2P_2, as a function of the number of vertices of the polytopes. For even dimensions d2d\ge{}2, the maximum values are attained when P1P_1 and P2P_2 are cyclic dd-polytopes with disjoint vertex sets. For odd dimensions d3d\ge{}3, the maximum values are attained when P1P_1 and P2P_2 are d2\lfloor\frac{d}{2}\rfloor-neighborly dd-polytopes, whose vertex sets are chosen appropriately from two distinct dd-dimensional moment-like curves.Comment: 37 pages, 8 figures, conference version to appear at SODA 2012; v2: fixed typos, made stylistic changes, added figure

    A geometric approach for the upper bound theorem for Minkowski sums of convex polytopes

    Get PDF
    We derive tight expressions for the maximum number of kk-faces, 0kd10\le{}k\le{}d-1, of the Minkowski sum, P1+...+PrP_1+...+P_r, of rr convex dd-polytopes P1,...,PrP_1,...,P_r in Rd\mathbb{R}^d, where d2d\ge{}2 and r<dr<d, as a (recursively defined) function on the number of vertices of the polytopes. Our results coincide with those recently proved by Adiprasito and Sanyal [2]. In contrast to Adiprasito and Sanyal's approach, which uses tools from Combinatorial Commutative Algebra, our approach is purely geometric and uses basic notions such as ff- and hh-vector calculus and shellings, and generalizes the methodology used in [15] and [14] for proving upper bounds on the ff-vector of the Minkowski sum of two and three convex polytopes, respectively. The key idea behind our approach is to express the Minkowski sum P1+...+PrP_1+...+P_r as a section of the Cayley polytope C\mathcal{C} of the summands; bounding the kk-faces of P1+...+PrP_1+...+P_r reduces to bounding the subset of the (k+r1)(k+r-1)-faces of C\mathcal{C} that contain vertices from each of the rr polytopes. We end our paper with a sketch of an explicit construction that establishes the tightness of the upper bounds.Comment: 43 pages; minor changes (mostly typos

    The maximum number of faces of the Minkowski sum of three convex polytopes

    Get PDF
    We derive tight expressions for the maximum number of kk-faces, 0kd10\le{}k\le{}d-1, of the Minkowski sum, P1+P2+P3P_1+P_2+P_3, of three dd-dimensional convex polytopes P1P_1, P2P_2 and P3P_3 in Rd\reals^d, as a function of the number of vertices of the polytopes, for any d2d\ge{}2. Expressing the Minkowski sum as a section of the Cayley polytope C\mathcal{C} of its summands, counting the kk-faces of P1+P2+P3P_1+P_2+P_3 reduces to counting the (k+2)(k+2)-faces of C\mathcal{C} which meet the vertex sets of the three polytopes. In two dimensions our expressions reduce to known results, while in three dimensions, the tightness of our bounds follows by exploiting known tight bounds for the number of faces of rr dd-polytopes in Rd\reals^d, where rdr\ge d. For d4d\ge{}4, the maximum values are attained when P1P_1, P2P_2 and P3P_3 are dd-polytopes, whose vertex sets are chosen appropriately from three distinct dd-dimensional moment-like curves

    Analysis of the Incircle predicate for the Euclidean Voronoi diagram of axes-aligned line segments

    Get PDF
    In this paper we study the most-demanding predicate for computing the Euclidean Voronoi diagram of axes-aligned line segments, namely the Incircle predicate. Our contribution is two-fold: firstly, we describe, in algorithmic terms, how to compute the Incircle predicate for axes-aligned line segments, and secondly we compute its algebraic degree. Our primary aim is to minimize the algebraic degree, while, at the same time, taking into account the amount of operations needed to compute our predicate of interest. In our predicate analysis we show that the Incircle predicate can be answered by evaluating the signs of algebraic expressions of degree at most 6; this is half the algebraic degree we get when we evaluate the Incircle predicate using the current state-of-the-art approach. In the most demanding cases of our predicate evaluation, we reduce the problem of answering the Incircle predicate to the problem of computing the sign of the value of a linear polynomial (in one variable), when evaluated at a known specific root of a quadratic polynomial (again in one variable). Another important aspect of our approach is that, from a geometric point of view, we answer the most difficult case of the predicate via implicitly performing point locations on an appropriately defined subdivision of the place induced by the Voronoi circle implicated in the Incircle predicate.Comment: 17 pages, 4 figures, work presented in the paper is part of M. Kamarianakis' M.S. thesi

    Guarding curvilinear art galleries with edge or mobile guards via 2-dominance of triangulation graphs

    Get PDF
    AbstractIn this paper we consider the problem of monitoring an art gallery modeled as a polygon, the edges of which are arcs of curves, with edge or mobile guards. Our focus is on piecewise-convex polygons, i.e., polygons that are locally convex, except possibly at the vertices, and their edges are convex arcs.We transform the problem of monitoring a piecewise-convex polygon to the problem of 2-dominating a properly defined triangulation graph with edges or diagonals, where 2-dominance requires that every triangle in the triangulation graph has at least two of its vertices in its 2-dominating set. We show that: (1) ⌊n+13⌋ diagonal guards are always sufficient and sometimes necessary, and (2) ⌊2n+15⌋ edge guards are always sufficient and sometimes necessary, in order to 2-dominate a triangulation graph. Furthermore, we show how to compute: (1) a diagonal 2-dominating set of size ⌊n+13⌋ in linear time and space, (2) an edge 2-dominating set of size ⌊2n+15⌋ in O(n2) time and O(n) space, and (3) an edge 2-dominating set of size ⌊3n7⌋ in O(n) time and space.Based on the above-mentioned results, we prove that, for piecewise-convex polygons, we can compute: (1) a mobile guard set of size ⌊n+13⌋ in O(nlogn) time, (2) an edge guard set of size ⌊2n+15⌋ in O(n2) time, and (3) an edge guard set of size ⌊3n7⌋ in O(nlogn) time. All space requirements are linear. Finally, we show that ⌊n3⌋ mobile or ⌈n3⌉ edge guards are sometimes necessary.When restricting our attention to monotone piecewise-convex polygons, the bounds mentioned above drop: ⌈n+14⌉ edge or mobile guards are always sufficient and sometimes necessary; such an edge or mobile guard set, of size at most ⌈n+14⌉, can be computed in O(n) time and space
    corecore